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Abstract

The uniform internal heating of a solid slab and the viscous flow between two parallel walls, are used to illustrate the

possibility of minimizing the global entropy generation rate by cooling the external surfaces convectively in an

asymmetric way. The known analytic expressions for the temperature field, in the first case, and the velocity and

temperature fields, in the second case, are used to calculate the global entropy generation rate explicitly. In dimen-

sionless terms, this function depends on the dimensionless ambient temperature and convective heat transfer coefficients

(Biot numbers) of each surface which, in general, are not assumed to be the same. When the Biot numbers for each

surface are equal, the entropy generation rate shows a monotonic increase. However, when the Biot numbers are

different this function displays a minimum for specific cooling conditions.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The entropy generation rate has become a useful tool

for evaluating the intrinsic irreversibilities associated

with a given process or device [1–5]. By determining the

conditions under which this function is minimized, it is

possible to optimize the operating conditions by reduc-

ing the dissipation to a minimum consistent with the

physical constraints imposed on the system. Further, it

has been recognized that good engineering heat transfer

design in problems where either heat transfer augmen-

tation or thermal insulation are required leads to the

minimization of entropy generation [1]. While this ap-

proach has proven to be very powerful, surprisingly the

analysis of some simple problems that may have im-

portant consequences has, to our knowledge, not been

carried out so far.

In this paper, the entropy generation minimization

method is applied to the analysis of two simple prob-

lems, namely, the uniform internal heating of a solid

slab and a Poiseuille flow between two infinite parallel

plane walls of finite thickness. In both cases, the systems

exchange heat with the ambient following Newton�s
cooling law. 1 In order to make the paper self-contained

we solve analytically the heat transfer equation for each

case (i.e., the solid slab and the flow between parallel

walls) with thermal boundary conditions of the third

kind. It is assumed that the heat transfer coefficients for

each surface are in general different. From the analytic

expressions for the temperature field, in the first case,

and the velocity and temperature fields, in the second

one, the local and global entropy generation rates are

calculated. Fixing the dimensionless convective heat

transfer coefficient (Biot number) in one of the surfaces,

an optimum convective heat transfer coefficient for the

second surface that minimizes the global entropy gen-

eration rate is found. In this way, the conditions for

minimum total energy loss due to irreversibilities in

these systems are determined. For the flow between

parallel plates, the behavior of the local Nusselt number
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and its asymptotic value for minimum entropy genera-

tion conditions is also explored.

2. Steady internal heating in a solid slab

Let us consider a solid slab of thermal conductivity ks
and thickness a which experiences a uniform volumetric

heating rate _qq. We assume that the slab is placed hori-
zontally such that the upper surface is located at

y0 ¼ a=2 and the lower surface is at y0 ¼ �a=2, y0 de-
noting the transversal coordinate. The temperature field

reaches a steady state because the surfaces of the slab are

bathed by a fluid of fixed temperature Ta. In dimen-

sionless terms, the heat transfer equation for this system

reduces to

d2Hs

dy2
¼ �1; ð1Þ

where the dimensionless temperature is given by Hs ¼
ksðTs � TaÞ= _qqa2, with Ts being the temperature of the

solid. The dimensionless (spatial) coordinate y is nor-
malized by a. Evidently, the thermal behavior of the

system, particularly heat flow irreversibilities, strongly

depends on boundary conditions. Here the heat transfer

equation is solved using boundary conditions of the

third kind that indicate that the normal temperature

gradient at any point in the boundary is assumed to be

proportional to the difference between the temperature

at the surface and the external ambient temperature.

Hence, the amount of heat entering or leaving the sys-

tem depends on the external temperature as well as on

the convective heat transfer coefficient. Let us assume

that the external fluid streams that wash each surface of

the slab are in general different. Then, the convective

heat transfer coefficients, although taken to be constant,

do not have the same value on both sides. Therefore, Eq.

(1) must satisfy the boundary conditions

dHs

dy
þ Bi1sHs ¼ 0; at y ¼ 1

2
; ð2Þ

dHs

dy
� Bi2sHs ¼ 0; at y ¼ � 1

2
; ð3Þ

where the Biot numbers Bi1s ¼ h1sa=ks and Bi2s ¼ h2sa=ks
are the dimensionless expressions of the convective heat

Nomenclature

a slab width or separation between the planar

walls (m)

Bi Biot number, ah=k
he external convective heat transfer coefficient

(Wm�2 K�1)

heff effective convective heat transfer coefficient

(Wm�2 K�1), 1=ðdw=kw þ 1=heÞ
hi internal convective heat transfer coefficient

(Wm�2 K�1), �ðk=ðTw � TbÞÞðoT=oy0Þy0¼a=2

k thermal conductivity (Wm�1 K�1)

Nu local Nusselt number, hia=2k
p pressure (kPa)

_qq uniform volumetric heating rate (W/m3)
_SS0 local entropy generation rate per unit length

(Wm�4 K�1)
_SS dimensionless local entropy generation rate

per unit length, a2 _SS0=k
h _SSi dimensionless global entropy generation

rate per unit length,
R 1=2
�1=2

_SS dy
T temperature (K)

Ta external ambient temperature (K)

Tb bulk fluid temperature (K)
R a=2
�a=2 u

0Tf dy0=R a=2
�a=2 u

0 dy0

u0 axial fluid velocity (m/s)

u dimensionless axial fluid velocity, u0=Uo

Uo characteristic velocity of the fluid (m/s),

ða2=gÞdp=dx

x0 axial coordinate (m)

x dimensionless axial coordinate, x0=a
y0 transversal coordinate (m)

y dimensionless transversal coordinate, y0=a

Greek symbols

dw wall thickness (m)

g dynamic viscosity of the fluid (kgm�1 s�1)

Hf dimensionless fluid temperature, kfðTf �
TaÞ=gU 2

o

Haf dimensionless external ambient temperature

(fluid flow problem), kfðTaÞ=gU 2
o

Has dimensionless external ambient temperature

(solid slab problem), ksðTaÞ= _qqa2
Hb dimensionless bulk fluid temperature,R 1=2

�1=2 uðHf þ HafÞdy=
R 1=2
�1=2 udy

Hs dimensionless solid temperature, ksðTs�
TaÞ= _qqa2

Subscripts

1 upper wall or surface

2 lower wall or surface

f fluid

s solid

w wall

opt optimum
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transfer coefficients of the upper and lower surfaces, h1s
and h2s, respectively.

The solution of Eq. (1) under boundary conditions

(2) and (3) is

Hsðy;Bi1s;Bi2sÞ ¼ � y2

2
þ Csy þ Ds; ð4Þ

where

Cs ¼ � 1
2

Bi1s � Bi2s
Bi1s þ Bi2s þ Bi1sBi2s

� �
;

Ds ¼
1

8
1

�
þ 4

Bi2s
� 2ð2þ Bi2sÞðBi1s � Bi2sÞ
Bi2sðBi1s þ Bi2s þ Bi1sBi2sÞ

�
:

Notice that when h1s ¼ h2s the solution (4) reduces to
the well-known solution of the steady internal heating

problem as given for instance by Bejan (cf. Eq. (2.62) in

Ref. [6]).

2.1. Entropy generation rate

In the case of the steady internal heating problem in a

solid material, the entropy generation rate must consider

irreversibilities caused by heat flow. Its explicit form can

be obtained from the energy and entropy balance

equations along with Fourier�s law for the heat flux. In

dimensionless terms, the local entropy generation rate,
_SS, is given by [7]

_SS ¼ 1

ðHs þ HasÞ2
dHs

dy

� �2

; ð5Þ

where _SS is normalized by ks=a2 and the dimensionless
ambient temperature is given by Has ¼ ksTa= _qqa2. Once _SS
is integrated from y ¼ �1=2 to y ¼ 1=2, the global en-
tropy generation rate per unit length in the axial direc-

tion, h _SSi, is obtained. The explicit result reads

h _SSi ¼ Bi1sð2þ Bi2sÞ
2þ Bi2s þ 2HasðBi1s þ Bi2s þ Bi1sBi2sÞ

þ Bi2sð2þ Bi1sÞ
2þ Bi1s þ 2HasðBi1s þ Bi2s þ Bi1sBi2sÞ

þ Esffiffiffiffi
Fs

p arctan
Bi1sð2þ Bi2sÞffiffiffiffi

Fs
p

� ��

� arctan
�Bi2sð2þ Bi1sÞffiffiffiffi

Fs
p

� ��
; ð6Þ

where

Es ¼ 4ðBi1s þ Bi2s þ Bi1sBi2sÞ;

Fs ¼ �8ðBi1s þ Bi2sÞ � 4½ðBi1s þ Bi2sÞ2 þ Bi1sBi2sð1þ Bi1s

þ Bi2sÞ� � Bi21sBi
2
2s � 8HasðBi1s þ Bi2s þ Bi1sBi2sÞ2:

Notice that this quantity only depends on the dimen-

sionless parameters Bi1s, Bi2s and Has. Since the global

entropy generation rate considers the whole dissipation

produced by irreversibilities in the system, we can look

for values of the parameters that minimize the function

h _SSi. Let us first explore the behavior of h _SSi when the
Biot numbers of each surface are the same (Bi ¼ Bi1s ¼
Bi2s). This corresponds to symmetric convective cooling.
Fig. 1 shows the global entropy generation rate as a

function of the single Biot number for different values of

the dimensionless ambient temperatures, namely, 1, 2

and 3. For instance, Has ¼ 1 may correspond to a

commercial copper slab with a thickness of 0.05 m at

ambient temperature (20 �C) and a heating rate of

4:36� 107 W/m3. As can be observed from Fig. 1, for

this case the global entropy generation rate is always a

monotonous increasing function of Bi and reaches, for a
given Has, a limiting value as Bi ! 1.

Let us now consider conditions of asymmetric con-

vective cooling, namely, the case when the Biot numbers

for each surface are different. In this case, it is possible to

find an optimum Biot number for one of the surfaces

which leads to a minimum global entropy generation

rate provided the dimensionless ambient temperature

and the Biot number of the other surface remain fixed.

For instance, if we fix Has and the lower surface Biot

number, Bi2s, it is found that there is a value of the upper
surface Biot number, Bi1s, that minimizes h _SSi. This is
illustrated in Fig. 2 where we have displayed h _SSi as a
function of Bi1s for Has ¼ 1 and different values of Bi2s.

Fig. 1. Global entropy generation rate for the steady internal

heating of a solid slab as a function of the single Biot number

and different ambient temperatures (symmetric convective

cooling).
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The previous results indicate, therefore, that mini-

mum dissipation can be reached by extracting heat in the

system in an asymmetric way. Although we have not

been able to derive the value of the minimum analyti-

cally, in Fig. 3 we present the numerically determined

upper surface optimum Biot number, ðBi1sÞopt, as a
function of the lower surface Biot number, Bi2s, for three
different values of the dimensionless ambient tempera-

ture. The behavior observed in the figure indicates that

the lower the ambient temperature the higher the

asymmetry in the cooling required to achieve the mini-

mum irreversible losses.

Let us now turn to the analysis of the asymmetric

cooling in a problem where apart from heat flow there

are irreversibilities due to viscous dissipation.

3. Viscous flow between parallel walls

The dimensionless velocity field in Poiseuille flow

between two infinite parallel plane walls located at

y ¼ �1=2 and y ¼ 1=2 is

u ¼ 1

8
ð1� 4y2Þ; ð7Þ

where the velocity, u, has been normalized by

Uo ¼ ða2=gÞdp=dx, a denoting in this instance the sepa-
ration between the walls, and g and dp=dx being the
dynamic viscosity of the fluid and the imposed pressure

gradient, respectively.

With the previous velocity field, we proceed to solve

the energy balance equation considering viscous dissi-

pation. Once again, the thermal behavior of the flow

strongly depends on boundary conditions. As before, we

consider boundary conditions of the third kind. In this

case, the amount of heat entering or leaving the system

depends on the external temperature as well as on the

effective convective heat transfer coefficient which in-

cludes both the thermal wall resistance and the external

convective heat transfer coefficient. The heat transfer

equation, in dimensionless form, reduces to

d2Hf

dy2
þ du

dy

� �2

¼ 0; ð8Þ

where the dimensionless temperature is now given by

Hf ¼ kfðTf � TaÞ=gU 2
o , with Tf and Ta being the fluid and

ambient temperatures, respectively, and kf the fluid

thermal conductivity. Eq. (8) must satisfy the boundary

conditions

dHf

dy
þ Bi1Hf ¼ 0; at y ¼ 1

2
; ð9Þ

dHf

dy
� Bi2Hf ¼ 0; at y ¼ � 1

2
; ð10Þ

where the Biot numbers Bi1 ¼ ðheffÞ1a=kf and Bi2 ¼
ðheffÞ2a=kf are the dimensionless expressions of the

convective heat transfer coefficients of the upper and

Fig. 2. Global entropy generation rate for the steady internal

heating of a solid slab as a function of the upper surface Biot

number and different lower surface Biot numbers, Has ¼ 1.

Fig. 3. Optimum upper surface Biot number for the steady

internal heating of a solid slab as a function of the lower surface

Biot number and different ambient temperatures.
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lower walls, ðheffÞ1 and ðheffÞ2, respectively, which in

general, are assumed to be different. Here

ðheffÞj ¼
1

ðdwÞj
ðkwÞj

þ 1
ðheÞj

; j ¼ 1; 2: ð11Þ

In Eq. (11), dw and kw are the wall thickness and the
wall thermal conductivity, respectively, while ðheÞ1 and
ðheÞ2 are the external convective heat transfer coefficient
of the upper and lower walls, respectively.

The solution for the temperature field is given in the

form

Hfðy;Bi1;Bi2Þ ¼ � y4

12
þ Cfy þ Df ; ð12Þ

where

Cf ¼ � 1

24

Bi1 � Bi2
Bi1 þ Bi2 þ Bi1Bi2

;

Df ¼
1

192
1

�
þ 8

Bi2
� 4ðBi1 � Bi2Þð2þ Bi2Þ
Bi2ðBi1 þ Bi2 þ Bi1Bi2Þ

�
:

We now proceed to calculate the entropy generation

rate using the previous velocity and temperature fields.

3.1. Entropy generation rate

In the flow of a monocomponent viscous fluid, the

entropy generation rate, _SS, can be written explicitly in
dimensionless terms as [7]

_SS ¼ 1

ðHf þ HafÞ2
dHf

dy

� �2

þ 1

Hf þ Haf

du
dy

� �2

; ð13Þ

where _SS is normalized by kf=a2 and the dimensionless
ambient temperature is given by Haf ¼ kfTa=gU 2

o . In

writing Eq. (13), we have taken into account irreversi-

bilities caused by both viscous dissipation and heat flow.

The largest values of _SS are obtained near the walls for it
is in these regions where the strongest dissipation occurs.

The global entropy generation rate per unit length in the

axial direction, h _SSi, is once more obtained by integrating
_SS from y ¼ �1=2 to y ¼ 1=2. The explicit result reads

h _SSi ¼ Bi1ð2þ Bi2Þ
2þ Bi2 þ 24HafðBi1 þ Bi2 þ Bi1Bi2Þ

þ Bi2ð2þ Bi1Þ
2þ Bi1 þ 24HafðBi1 þ Bi2 þ Bi1Bi2Þ

: ð14Þ

In this instance, the resulting quantity only depends on

the dimensionless parameters Bi1, Bi2 and Haf . One can

again look for values of the parameters that minimize

the function h _SSi. As in the previous example, we have
first explored the behavior of h _SSi when the Biot numbers
of each wall are the same (Bi ¼ Bi1 ¼ Bi2), that is, the
symmetric convective cooling of the walls. Although not

displayed graphically, similarly to what occurred in the

steady internal heating problem, we found that in the

present example the global entropy generation rate is

always a monotonous increasing function of Bi (with no
minima) and eventually reaches a limiting value as

Bi ! 1.

When we consider the case where the Biot numbers

for each wall are different, i.e. conditions of asymmetric

convective cooling, it is possible to find again an opti-

mum Biot number for one of the walls which leads to a

minimum global entropy generation rate provided the

dimensionless ambient temperature and the Biot number

of the other wall remain fixed. In fact, the result may be

derived analytically. For instance, if we fix Haf and the

lower wall Biot number, Bi2, it is found that the value of
the upper wall Biot number, Bi1, that minimizes h _SSi is
given by

ðBi1Þopt ¼
1

2b

n
� a þ fa2 � 16b½ðBi2 þ 2Þ2

þ 6Hafð16Bi2 þ 8Bi22 � 2Bi32 � Bi42Þ

þ 144H2
afð4Bi22 � Bi42Þ�g

1=2
o
; ð15Þ

where

a ¼ 4½ðBi2 þ 2Þ2 þ 12Hafð8þ 24Bi2 þ 16Bi22 þ 3Bi32Þ
þ 288H2

afð4Bi2 þ 8Bi22 þ 3Bi32Þ�

and

b ¼ ðBi2 þ 2Þ2 þ 8Hafð24þ 54Bi2 þ 33Bi22 þ 6Bi32Þ
þ 576H2

afð4þ 16Bi2 þ 19Bi22 þ 8Bi32 þ Bi42Þ:

Fig. 4 shows the optimum upper wall Biot number,

ðBi1Þopt, as a function of Bi2 for different values of Haf . It

is clear from the figure that as Haf changes in two orders

of magnitude there is only a slight change in the curves.

It is found that as Bi2 increases, ðBi1Þopt approaches a
limiting value which explicitly reads

lim
Bi2!1

ðBi1Þopt ¼ 1

�
þ 1

24Haf

�1=2

: ð16Þ

On the other hand, it is also observed that for Bi2 < 2,

ðBi1Þopt takes negative values which evidently have no
physical meaning. In fact, for Bi2 < 2 no minimum

values of h _SSi are found. This can be observed in Fig. 5
where the global entropy generation rate as a function of

the upper wall Biot number, Bi1, is shown for different
values of the lower wall Biot number (Bi2 ¼ 1, 2, 3, 4

and 6) and Haf ¼ 7. This value of Haf is obtained using

the physical properties of engine oil [8] at an ambient

temperature Ta ¼ 20 �C. For each curve, the function h _SSi
is normalized by its value at Bi1 ¼ 0. Notice that mini-

mum values of h _SSi are observed to occur for a given Bi1
provided Bi2 > 2. Also, the higher the value of Bi2, the
higher the value of the minimum. Once the minimum
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values are reached, h _SSi exhibits a monotonic increase as
Bi1 grows. Fig. 6 shows also h _SSi versus Bi1 but for higher
values of Bi2. As Bi2 increases the optimum value of Bi1

also increases but it reaches the limit given by Eq. (16) as

Bi2 ! 1. The foregoing results indicate, therefore, that

once more the minimum dissipation can be reached by

extracting heat in the system in an asymmetric way.

Let us now calculate the local Nusselt number at the

upper wall, based on the internal convective heat

transfer coefficient, hi, namely [6],

hi ¼ � kf
Tw � Tb

oTf
oy0

� �
y0¼a=2

; ð17Þ

where Tb and Tw are the dimensional expressions of the
bulk temperature (i.e., the cross-section averaged tem-

perature of the stream) and the temperature at the wall,

respectively. Hence, the global Nusselt number at the

upper wall is given by

Nu ¼ hia
2kf

¼ �
ðdHf=dyÞy¼1=2

2ðHfðy ¼ 1=2Þ þ Haf � HbÞ

¼ Bi1Hfðy ¼ 1=2Þ
2ðHfðy ¼ 1=2Þ þ Haf � HbÞ

; ð18Þ

where the dimensionless bulk temperature is defined as

Hb ¼
R 1=2
�1=2 uðHf þ HafÞdyR 1=2

�1=2 udy
:

Fig. 7 shows the Nusselt number (18) evaluated at the

optimum upper wall Biot number, ðBi1Þopt, as a function

Fig. 4. Optimum upper wall Biot number for viscous flow be-

tween parallel walls as a function of the lower wall Biot number

and different ambient temperatures.

Fig. 5. Normalized global entropy generation rate for viscous

flow between parallel walls as a function of the upper wall Biot

number and different lower wall Biot numbers, Haf ¼ 7.

Fig. 6. Normalized global entropy generation rate for viscous

flow between parallel walls as a function of the upper wall Biot

number and different lower wall Biot numbers, Haf ¼ 7.
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of Bi2 for different dimensionless ambient temperatures.
This local Nusselt number for minimum entropy gen-

eration conditions displays a monotonic behavior as Bi2
increases and reaches a limiting value as Bi2 ! 1. In

fact, this limiting value can be determined analytically,

namely,

lim
Bi2!1

ðNuÞopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1=24HafÞ

p
1� 0:2286 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1=24HafÞ

p
 � ð19Þ

which depends only on the dimensionless ambient tem-

perature. As can be seen from the figure, the effect of the

ambient temperature on the upper wall Biot number

dependence of the local Nusselt number is not very

pronounced.

4. Concluding remarks

In this paper, using two of the simplest heat transfer

problems, namely, the steady internal heating of a solid

slab and the viscous flow between two parallel plane

walls of finite thickness, we have shown that minimum

entropy generation rates can be reached by extracting

heat in the system in an asymmetric way.

Our point of departure was the solution of the

balance equations for these problems yielding in the

first case the temperature and in the second, the ve-

locity and temperature fields. In both problems the

temperature field was determined applying thermal

boundary conditions of the third kind, assuming in

general that the convective heat transfer coefficients for

the boundaries are different. Under these conditions,

and assuming that one of the heat transfer coefficients

(say that of the lower surface or wall) and the ambient

temperature are fixed, the global entropy generation

rate as a function of the other heat transfer coefficient

displays a minimum. This provides the conditions un-

der which the irreversibilities due to viscous friction

and/or heat flow are minimized. The results for both

examples show many similarities but also two impor-

tant differences. On the one hand, it is somewhat sur-

prising that the apparently simpler situation (i.e., the

internal heating of a solid slab) leads to a more com-

plex expression for the global entropy generation rate.

This is tied to the fact that the (spatial) integration in

the case of Poiseuille flow leads to algebraic expressions

whereas that of the solid slab involves trascendental

functions. On the other hand, in the internal heating

problem there is always an optimum upper surface Biot

number irrespective of the value of the lower surface

Biot number. In contrast, in the viscous flow case, only

for Bi2 > 2 the upper wall Biot number producing a

minimum in the global entropy generation rate is

physically meaningful. Finally, the effect of the ambient

temperature on the minimum entropy generation con-

ditions is by far more important in the steady internal

heating of a solid slab than in the Poiseuille flow be-

tween parallel planar walls.

Although the problems we solved are very simple

ones, we are persuaded that the observed trends should

also be present in more complex situations. Whether this

conjecture is valid requires further work on this subject.

For instance, it appears that when nonlinear convective

effects in the inner flow are present, a minimum also

arises under asymmetric convective cooling. A detailed

investigation of this problem is presently under way and

will be reported elsewhere.

As remarked earlier, good engineering heat transfer

design aims at minimizing the losses due to irreversible

behavior. Therefore, the possibility of reaching a mini-

mum in the entropy generation rate using asymmetric

convective cooling, which is the central result of this

paper, might be useful to optimize operating conditions

of heat transfer devices.
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